2,817 research outputs found

    Ammonia : this is not the end but rather the end of the beginning

    Get PDF
    Hepatic encephalopathy (HE) represents a wide spectrum of neurological or neuropsychological symptoms caused by liver disease and/or portosystemic shunts. The major role of hyperammonemia in association with systemic inflammation and oxidative stress in the pathogenesis of HE has progressively emerged. However, the cascading downstream effects caused by these pathogenic factors remain unresolved. The underlying abnormalities which are thought to cause HE include modification of glutamatergic and GABAergic neurotransmission, mitochondrial dysfunction, energy impairment, lactate dyshomeostasis, increased blood-brain barrier permeability, brain edema/astrocyte swelling, as well as accumulation of toxic compounds (manganese, bile acids, indols)

    Laplacian Solitons and Symmetry in G_2-geometry

    Full text link
    In this paper, it is shown that (with no additional assumptions) on a compact 7-dimensional manifold which admits a G2G_2-structure soliton solutions to the Laplacian flow of R. Bryant can only be shrinking or steady. We also show that the space of symmetries (vector fields that annihilate via the Lie derivative) of a torsion-free G2G_2-structure on a compact 7-manifold is canonically isomorphic to H1(M,R)H^1(M,\mathbb{R}). Some comparisons with Ricci solitons are also discussed, along with some future directions of exploration

    An improved algorithm for deinterlacing video streams

    Full text link
    The MPEG-4 standard for computerized video incorporates the concept of a video object pLane While in the simplest case this can be the full rectangular frame, the standard supports a hierarchical set of arbitrary shaped planes, one for each content sensitive video object. Herein is proposed a method for extracting arbitrary planes from video that does not already contain video object plane information; Deinterlacing is the process of taking two video fields, each at half the height of the finalized image frame, and combining them into that finalized frame. As the fields are not captured simultaneously, temporal artifacts may result. Herein is proposed a method to use the above mentioned video object planes to calculate the intra-field motion of objects in the video stream and correct for such motion leading to a higher quality deinterlaced output.*; *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation)

    Using Data to Drive State Improvement in Enrollment and Retention Performance

    Get PDF
    Outlines the RWJF Maximizing Enrollment program's core performance measures for Medicaid and Children's Health Insurance Program enrollment and retention, designed to assess state efforts to better utilize data to monitor and improve outreach and policy

    Robust Hypothesis Tests for Detecting Statistical Evidence of 2D and 3D Interactions in Single-Molecule Measurements

    Full text link
    A variety of experimental techniques have improved the 2D and 3D spatial resolution that can be extracted from \emph{in vivo} single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native cellular environments. Situations where such forces are biologically relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x,yx,y (or x,y,zx,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions should be considered to more faithfully represent the underlying experimental kinetics. The technique is robust in the sense that 2D (3D) interactions can be detected via statistical hypothesis testing even if there is substantial inconsistency between the physical particle's actual noise sources and the simplified model's assumed noise structure. For example, 2D (3D) interactions can be reliably detected even if the researcher assumes normal diffusion, but the experimental data experiences "anomalous diffusion" and/or is subjected to a measurement noise characterized by a distribution differing from that assumed by the fitted model. The approach is demonstrated on control simulations and on experimental data (IFT88 directed transport in the primary cilium).Comment: 7 pages, 6 figure

    The role of stereotactic radiosurgery in the multimodal management of growth hormone–secreting pituitary adenomas

    Get PDF
    Growth hormone (GH)–secreting pituitary adenomas represent a common source of GH excess in patients with acromegaly. Whereas surgical extirpation of the culprit lesion is considered first-line treatment, as many as 19% of patients develop recurrent symptoms due to regrowth of previously resected adenomatous tissue or to continued growth of the surgically inaccessible tumor. Although medical therapies that suppress GH production can be effective in the management of primary and recurrent acromegaly, these therapies are not curative, and lifelong treatment is required for hormonal control. Stereotactic radiosurgery has emerged as an effective adjunctive treatment modality, and is an appealing alternative to conventional fractionated radiation therapy. The authors reviewed the growing body of literature concerning the role of radiosurgical procedures in the treatment armamentarium of acromegaly, and identified more than 1350 patients across 45 case series. In this review, the authors report that radiosurgery offers true hormonal normalization in 17% to 82% of patients and tumor growth control in 37% to 100% of cases across all series, while minimizing adverse complications. As a result, stereotactic radiosurgery represents a safe and effective treatment option in the multimodal management of primary or recurrent acromegaly secondary to GH-secreting pituitary adenomas

    A comparison of the thermal profiles of two adjacent thrust plates in western Montana

    Get PDF

    Evaluation of Image Registration Accuracy for Tumor and Organs at Risk in the Thorax for Compliance With TG 132 Recommendations

    Get PDF
    Purpose To evaluate accuracy for 2 deformable image registration methods (in-house B-spline and MIM freeform) using image pairs exhibiting changes in patient orientation and lung volume and to assess the appropriateness of registration accuracy tolerances proposed by the American Association of Physicists in Medicine Task Group 132 under such challenging conditions via assessment by expert observers. Methods and Materials Four-dimensional computed tomography scans for 12 patients with lung cancer were acquired with patients in prone and supine positions. Tumor and organs at risk were delineated by a physician on all data sets: supine inhale (SI), supine exhale, prone inhale, and prone exhale. The SI image was registered to the other images using both registration methods. All SI contours were propagated using the resulting transformations and compared with physician delineations using Dice similarity coefficient, mean distance to agreement, and Hausdorff distance. Additionally, propagated contours were anonymized along with ground-truth contours and rated for quality by physician-observers. Results Averaged across all patients, the accuracy metrics investigated remained within tolerances recommended by Task Group 132 (Dice similarity coefficient \u3e0.8, mean distance to agreement \u3c3 \u3emm). MIM performed better with both complex (vertebrae) and low-contrast (esophagus) structures, whereas the in-house method performed better with lungs (whole and individual lobes). Accuracy metrics worsened but remained within tolerances when propagating from supine to prone; however, the Jacobian determinant contained regions with negative values, indicating localized nonphysiologic deformations. For MIM and in-house registrations, 50% and 43.8%, respectively, of propagated contours were rated acceptable as is and 8.2% and 11.0% as clinically unacceptable. Conclusions The deformable image registration methods performed reliably and met recommended tolerances despite anatomically challenging cases exceeding typical interfraction variability. However, additional quality assurance measures are necessary for complex applications (eg, dose propagation). Human review rather than unsupervised implementation should always be part of the clinical registration workflow
    • …
    corecore